上海东时贸易有限公司主要回收半导体设备、固晶机、焊线机、X-ray无损检测设备、Panasonic贴片机、FUJI贴片机、Siemens贴片机、Sanyo贴片机、Yamaha贴片机、Hitachi贴片机等。公司尤其擅长为客户提供整厂SMT/AI设备,多年来为众多电子制造商提供了令客户满意的设备及服务。
贴片机各部件的名称及功能
1. 主机
1.1 主电源开关(Main Power Switch):开启或关闭主机电源
1.2 视觉显示器(Vision Monitor):显示移动镜头所得的图像或元件和记号的识别情况。
1.3 操作显示器(Operation Monitor):显示机器操作的VIOS软件屏幕,如操作过程中出现错误或有问题时,在这个屏幕上也显示纠正信息。
1.4 警告灯(Warning Lamp):指示贴片机在绿色、和红色时的操作条件。
绿色:机器在自动操作中
:错误(回归原点不能执行,拾取错误,识别故障等)或联锁产生。
红色:机器在紧急停止状态下(在机器或YPU停止按钮被按下)。
1.5 紧急停止按钮(Emergency Stop Button):按下这按钮马上触发紧急停止。
2. 工作头组件(Head Assembly)
工作头组件:在XY方向(或X方向)移动,从供料器中拾取零件和贴装在PCB上。
工作头组件移动手柄(Movement Handle):当伺服控制解除时,你可用手在每个方向移动,当用手移动工作头组件时通常用这个手柄。
3. 视觉系统(Vision System)
移动镜头(Moving Camera):用于识别PCB上的记号或照位置或坐标跟踪。
独立视觉镜头(Single-Vision Camera):用于识别元件,主要是那些有引脚的QPF。
背光部件(Backlight Unit):当用独立视觉镜头识别时,从背部照射元件。
激光部件(Laser Unit):通过激光束可用于识别零件,主要是片状零件。
多视像镜头(Multi-Vision Camera):可一次识别多种零件,加快识别速度。
贴片机的生产厂家很多,则种类也较多。贴片机的分类如下。
按速度分
中速贴片机
高速贴片机
超高速贴片机
特点:4万片/h以上,采用旋转式多头系统。Assembleo-FCM型和FUJI-QP-132型贴片机均装有16个贴片头,其贴片速度分别达9.6万片/h和12.7万片/h。
按功能分
高速/超高速贴片机
特点:主要以贴片式元件为主体,贴片器件品种不多。
多功能贴片机
特点:能贴装大型器件和异型器件。
按方式分
顺序式贴片机
特点:它是按照顺序将元器件一个一个贴到PCB上,通常见到的就是该类贴片机。
同时式贴片机
特点:使用放置圆柱式元件的料斗,一个动作就能将元件全部贴装到PCB相应的焊盘上。产品更换时,所有料斗全部更换,已很少使用。
同时在线式贴片机
特点:由多个贴片头组合而成,依次同时对一块PCB贴片,assembleon-FCM就是该类。
自动化分
全自动机电一体化贴片机
特点:大部分贴片机就是该类。
手动式贴片机
特点:手动贴片头安装在Y轴头部,X、Y、e定位可以靠人手的移动和旋转来校正位置。主要用于新产品开发,具有价廉的优点。
选择编程的策略
生产部门的负责人常常会考虑采用编程的不同方式,他们会问:“采用何种编程方式对我来说是适合的呢?”没有一种可以满足所有的应用事例的。他们权衡的内容一般会包含有:所采用的解决方案对生产效率、生产线使用的计划安排、PCB的价格、工艺控制问题、缺陷率水平、供应商的管理、主要设备的成本以及存货的管理是否会带来冲击。
对生产效率带来的冲击
ATE编程会降低生产效率,这是因为为了能够满足编程的需要,要增加额外的时间。举例来说,如果为了检查制造过程中所出现的缺陷现象,需要花费15秒的时间进行测试,这时可能需要再增加5秒钟用来对该元器件进行编程。ATE所起到的作用就像是一台非常昂贵的单口编程器。同样,对于需要花费较长时间编程的高密度闪存器件和逻辑器件来说,所需要的总的测试时间将会更长,这令人。因此,当编程时间与电路板总的测试时间相比较所占时间非常小的时候,ATE编程方式是性价比一种方式。为了提高生产率,以求将较长的编程时间降低到的限度,ATE编程技术可以与板上技术相结合使用,例如:边界扫描或者说具有专利的众多方法中的一种。
还有一种解决方案是在电路板进行测试的时候,仅对目标器件的boot码进行编程处理。器件余下的编程工作在处于不影响生产率的时候才进行,一般来说是在设备进行功能测试的时候。然而,除非超过了ATE的能力,功能测试的能力是足够的,对于高密度器件来说性能价格比编程方法是一种自动化的编程设备。举例来说:ProMaster 970设备配置有12个接口,每小时能够对600个8兆闪存进行编程和激光标识。与此形成对照的是,ATE或者说功能测试仪将花费60至120小时来完成这些编程工作。
举例来说,如果失效是由于可编程控量突然增加,测试必须首先确定问题的根源,然后着手解决这个问题。如果说这个问题是由于元器件的问题所引起的、由于ATE编程软件所引起的、该PCB设计所引起的,或者说是因为测试夹具所引起的呢?
这些复杂的问题可能需要花费数周的时间去分解和解决,与此同时生产线只能够停顿下来待命。
与此形成对照的是,在器件编程领域处于位置的公司将直接与半导体供应厂商一起合作,来解决编程设备中所存在的问题,或者说自己设计设备,所以能够较快的识别问题的根源。
产出率
一个经过良好设计的编程设备能够提供优化的编程环境,并且能够确保可能的产量。然而,在编程过程中存在着很小比例的器件将会失效。不同的半导体供应商之间的这个比例是不同的,编程产出率的范围将会在99.3%到99.8%之间。自动化的编程设备被设计成能够识别这些缺陷,于是在PCB实施装配以前就可以将失效的元器件捕捉出来,从而实现将次品率降低到小的目的。经过比较,编程的失效率一般会高于在ATE编程环境中的。
对于制造厂商而言如果能够事先发现问题,可以在长期的经营中减少成本支出。编程设备不仅可以拥有较低的PIC失效率,它们经过设计也可以发现编程有缺陷的PIC器件。在现实环境中作为目标的PIC器件被溶入在PCB的设计中,设计成能够扮演另外一个角色的作用(电话、传真、扫描仪等等),作为一种专门的编程设备可以简单地做这些事情,而无需提供相同质量的编程环境。
供应商的管理